Features

Supports a 3x3 arrangement of SensL ArrayJ-30035-16P-PCB 4x4 arrays for a total of 12x12 SiPMs

"HF" Variant: Horizontal signal connector located on the front, SiPM arrays located on the front

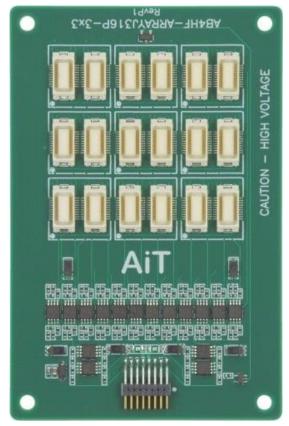
Four encoded position signals for event centroid calculations: X+, X-, Y+, Y-

DC-coupled signal path

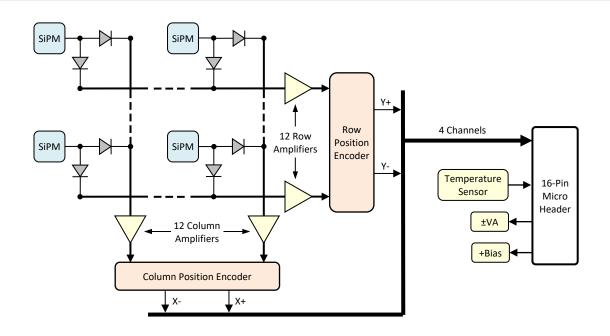
Low power consumption

Patented diode-coupled charge division readout, superior to traditional resistive readout

Improved spatial uniformity


Faster rise time

Reduced image noise


Precision temperature sensor

Four mounting holes for #4 or M3 hardware

SensL's fast output signals are not connected

Front view SiPM arrays not included

Specifications

Position Signal Outputs

Encoding Charge division multiplexed to

4 output channels: X+, X-, Y+, Y-

Gain 750Ω transimpedance gain

Output voltage $0 \rightarrow -1V$ into 100Ω load

Output impedance 100Ω

Output current 50mA maximum

Temperature Sensor

Output voltage 500mV + 10mV per °C

Output current 10mAOutput impedance 100Ω Accuracy $\pm 0.5^{\circ}C$

Bias Voltage +29V typical (refer to SiPM data)

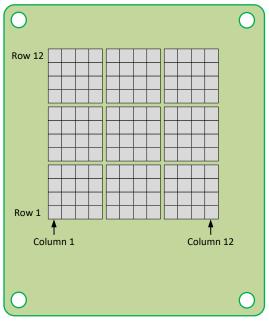
Voltage clamp 47V Zener diode

500mW maximum

Amplifier Voltage (\pm VA) $\pm 2.8V \rightarrow \pm 5.5V$ DC maximum

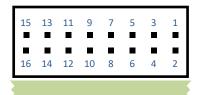
Current ±50mA typical

(Iq, no signal, no load)


Signal Connector Horizontal 16-pin 2-row header

0.050" pin pitch

Mating assembly Samtec FFSD-08-D-XX.XX-01-N


(XX.XX = length in inches)

Channel Map

Front view

Signal Connector

Side View

Pin	Function	Pin	Function
1	Temperature	2	Ground
3	X-	4	Ground
5	X+	6	Ground
7	-VA	8	Ground
9	+VA	10	Ground
11	Υ-	12	Ground
13	Y+	14	Ground
15	+Bias	16	Ground

4-Channel Position Encoder

Row and Column Encoder Weights

Row# or Col#	Row# or Col#	Fraction	Fraction	% Error	Notes
(for X- or Y-)	(for X+ or Y+)	(ideal)	(actual)	/6 LITOI	Notes
1	12	0.0833	0.0833	0.00 %	
2	11	0.1667	0.1650	-1.02 %	
3	10	0.2500	0.2483	-0.68 %	
4	9	0.3333	0.3311	-0.66 %	
5	8	0.4167	0.4167	0.00 %	Sum of X- and X+ fractions
6	7	0.5000	0.5000	0.00 %	or Y- and Y+ fractions
7	6	0.5833	0.5882	0.84 %	= 1.0833
8	5	0.6667	0.6637	-0.45 %	Independent of signal position
9	4	0.7500	0.7500	0.00 %	
10	3	0.8333	0.8333	0.00 %	
11	2	0.9167	0.9091	-0.83 %	
12	1	1.0000	1.0000	0.00 %	

Note: Errors exclude component tolerances

Output Signals

X- = (SiPM signal) * (encoder gain) * (X- fraction)

X+ = (SiPM signal) * (encoder gain) * (X+ fraction)

Y- = (SiPM signal) * (encoder gain) * (Y- fraction)

Y+ = (SiPM signal) * (encoder gain) * (Y+ fraction)

Typical event position calculation:

X column = (X + - X -) / (X + + X -)

Y row = (Y+ - Y-) / (Y+ + Y-)

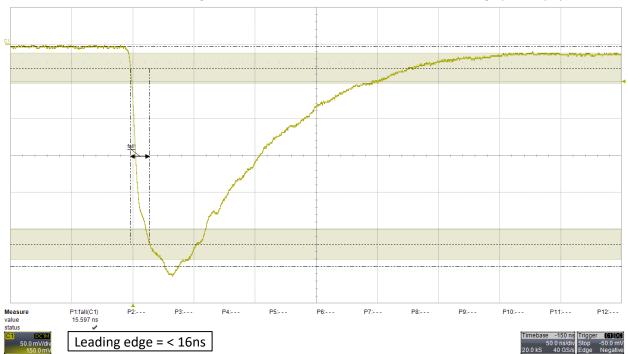
Example

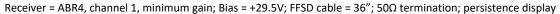
SiPM signal at column 4, row 3 (excluding encoder gain)

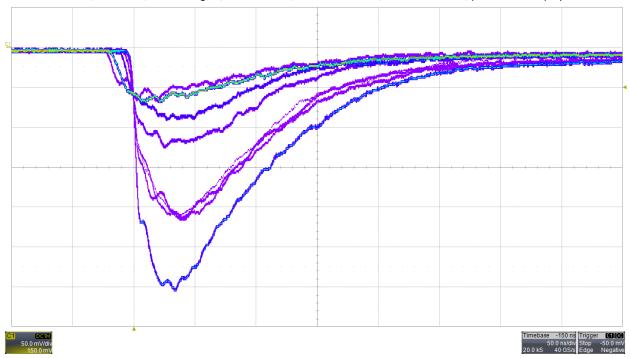
X- = (Column 4 signal) * 0.3311

X+ = (Column 4 signal) * 0.7500

Y- = (Row 3 signal) * 0.2483

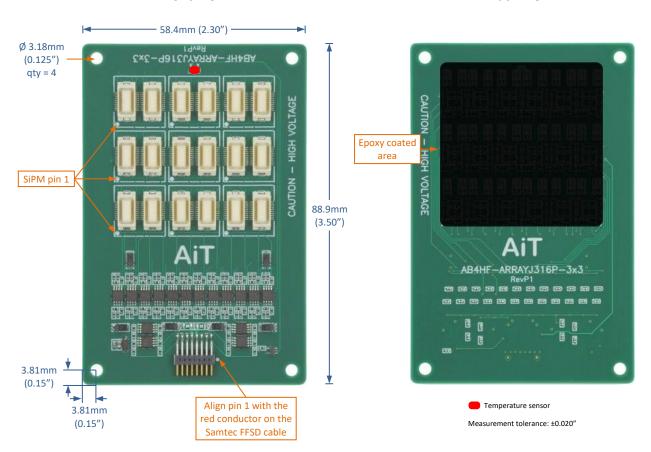

Y+ = (Row 3 signal) * 0.8333

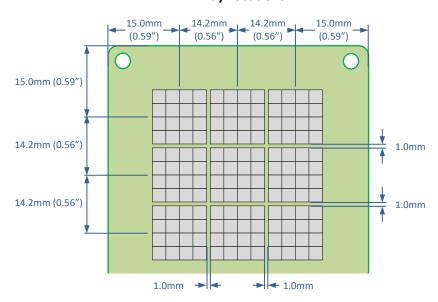

4-Channel Active Base for a 3x3 Arrangement of ArrayJ-30035-16P-PCB SiPM Arrays


Typical Signals

Source = LYSO emission

Receiver = ABR4, channel 1, minimum gain; Bias = +29.5V; FFSD cable = 36"; 50Ω termination; single pulse display

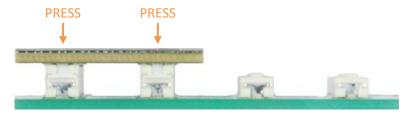




Mechanical

Front View Back View

Array Locations

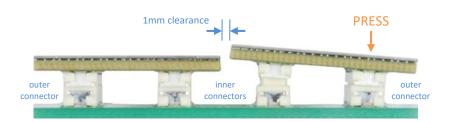

AB4HF-ARRAYJ316P-3x3

Rev. P1-1811

Array Installation Guide

STEP 1

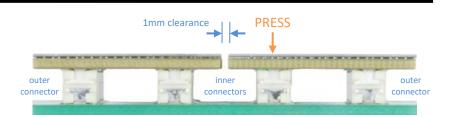
Install the first array by carefully pressing on the array surface above the connectors until the array is firmly seated. An audible "click" will indicate that the connectors are seated.



<u>CAUTION:</u> Do not contact the glass surface with <u>any</u> hard object. Any contact will damage the glass.

STEP 2

Attach the second array by carefully pressing above the <u>outer</u> connector until the connector is firmly seated.


Do not press the inner connector first or the glass surfaces may touch and damage the glass.

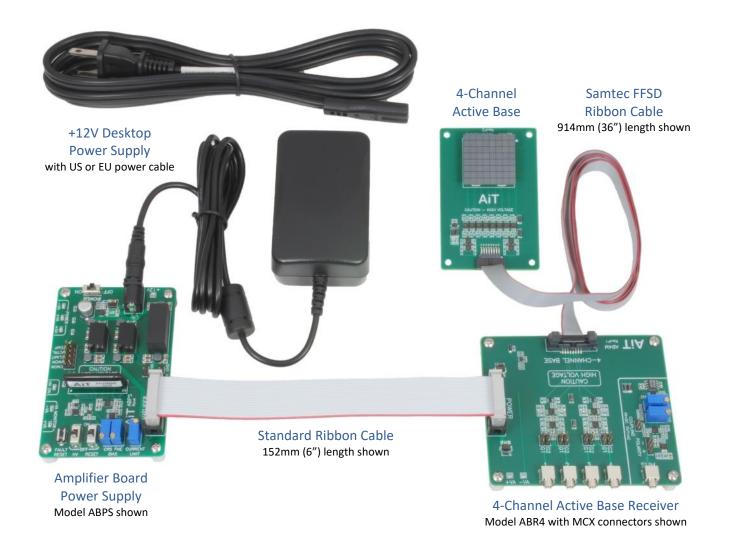
<u>CAUTION:</u> Do not contact the edges of the arrays with each other. Any contact will damage the glass.

STEP 3

Press above the inner connector until the second array is firmly seated.

Array Removal

To remove the arrays, reverse the installation procedure. Pull up the connectors labeled PRESS. Always pull up the inner connectors first.


WARNING

Never insert the inner connectors first, or remove the outer connectors first. In this case, the small clearance between arrays increases the chance of contacting the surfaces and damaging the glass.

Never insert inner connectors first Never pull up outer connectors first

4-Channel Active Base Readout Kit

Components

Each component is available separately. Refer to each datasheet for details.

The Active Base includes a 914mm (36") Samtec FFSD micro-pitch ribbon cable.

The Amplifier Board Power Supply includes a 12V desktop power supply and a HV80 bias voltage power supply.

The 4-channel Active Base Receiver includes a 152mm (6") power supply ribbon cable and a breakout board to connect any external power supply.

4-Channel Active Base for a 3x3 Arrangement of ArrayJ-30035-16P-PCB SiPM Arrays

Safety Information

WARNING – High Voltage

- High voltage may be present during operation
- High voltage stored on capacitors may be present after power is removed
- Improper handling may result in personnel injury or equipment damage

This high-voltage device must be used only by personnel trained and qualified in safe handling, installation, and operation of high-voltage equipment.

CAUTION – Electrostatic Discharge (ESD) Sensitivity

The circuit board can be damaged by electrostatic discharge. Observe precautions for handling electrostatic sensitive devices. Handle only at static-safe workstations.

High-Gain Photodetectors

High-gain photodetectors such as silicon photomultipliers may conduct damaging currents if exposed to high optical signal levels while the bias voltage is applied, or if the bias voltage exceeds the recommended operating range. These devices must be operated only in low-light conditions, and only within the manufacturer's recommended bias voltage range.

Handling and Disassembly

This product may be provided with a protective enclosure. Disassembled enclosure components and circuit boards may contain sharp edges. Take appropriate safety precautions while assembling or disassembling the enclosure and handling disassembled components.

Indoor Use Only

Do not operate this product in a wet or damp environment. Do not operate in an explosive atmosphere.

Use of this product, and AiT Instruments' liability related to use of this product, is further governed by AiT Instruments' standard terms and conditions of sale, which were provided upon purchase of this product.